Int J. Solids Structures Vol. 31, No. 17, pp. 2393-2406, 1994
Elsevier Science Ltd
@ Pergamon Printed in Great Britain
0020-7683/94 $7.00 + .00
0020-7683(94)E0023-O

A RUBBER WEDGE UNDER THE COMPRESSION OF
A LINE LOAD

T. S. Gao and Y. C. Gao
Department of Aerospace, Harbin Shipbuilding Engineering Institute, Harbin,
People’s Republic of China

(Received 3 December 1993)

Abstract— Using the constitutive equation of rubber-like materials given by Gao (1990, Theoretical
Appl. Fract. Mech. 14, 219-231), this paper investigates the problem of a wedge (or notch) under
the compression of a line load at its tip. The problem was treated as a plane strain case and the
large deformation was taken into account. The asymptotic solution to the stress-strain field near a
wedge apex (or a notch corner) is obtained. It is revealed that under compression of a line load, a
notch corner will be locally closed, i.e. the notch surface will contact each other. Under a similar
load, the wedge tip will be shrivelled to form a locally closed notch, i.e. the V-shaped wedge apex
will become W-shaped.

1. INTRODUCTION

In linear elastic theory, the problem of a concentrated line force acting on a wedge tip (or
a notch corner) is a very typical one and its solution can be found in very early literature
(Michell, 1902). According to the linear solution (Michell, 1902), when the wedge tip (or
notch corner) is approached, the stress and strain will tend to infinity, i.e. the field possesses
singularity. Although the singular field contains a large deformation area, for ordinary
engineering materials people can only consider the small deformation domain. Rubber-like
materials can sustain large strain, therefore the stress—strain behavior of singular field must
be analysed by nonlinear theory. There are two obstacles for solving the nonlinear singular
field: firstly, the inherently nonlinear geometry is difficult to describe; secondly, when
the singular point is approached, because of the tremendously large strain, the ordinary
constitutive relation may become physically invalid. Gao (1990) gave a constitutive relation
for rubber-like materials in which the stress tensor was decomposed into a spherical part
and a deviatoric part. This constitutive relation kept reasonably when strain tended to
infinity, and it was used to analyse the singular field of a plane strain crack. Knowles
and Sternberg (1973, 1974) gave an elastic constitutive relation which contained three
parameters. Their constitutive relation was also used to analyse the singular field near a
plane strain crack tip, but the classification of the solution is complicated and the second
approximation is needed. Furthermore, Gao’s constitutive relation was verified to be also
reasonable and convenient for analysing the plane stress crack tip field (Gao and Durban,
1994). Using Gao’s constitutive relation, Gao (1994) recently gave an asymptotic solution
to the singular field near a wedge tip (or a notch corner) of rubber-like materials that is
under the tension of a line load, i.e. the force directs outside the material domain as shown
in Figs 1(a,b). However, for a similar problem, if the force directs inside the material
domain, i.e. the wedge is under compression as shown in Figs 1(c, d), the solution cannot
be obtained by simply changing the signs of every quantity. Actually, the compression and
tension are quite different problems in large deformation cases; the deformation patterns
and field singularities are different for both cases. Using the constitutive relation given in
Gao (1990), the present paper analyses the singular field near a wedge tip (or a notch
corner) under the compression of a line load as shown in Figs 1(c, d). By dividing the field
into expanding sectors and narrowing sectors, the asymptotic solution to the wedge tip (or
notch corner) is obtained. The result shows that under compression, a notch will be locally
closed as shown in Fig. 1(d), while a wedge tip will be shrivelled to form a locally closed

2393



2394 T. 8. Gao and Y. C. Gao

(c) (d)

Fig. 1. Various loading cases: (a) wedge under tension; (b) a notch under tension: (c) a wedge
under compression ; (d) a notch under compression.

notch as shown in Fig. 1(c). For simplicity, we only analyse the problem of a wedge under
compression, but the same analysis is valid for a notch.

2. BASIC EQUATIONS

Considering a three dimensional domain of material, we denote the position vectors
of a material point by P and p, before and after loading, respectively. x' (i = 1, 2, 3) denotes
the Lagrangian coordinate, then we can define two local triads;

oP ap
Pl =y =T 1)
ox' P ox' (
The displacement gradient is
F=p®P (2)

in which the summation rule is implied, P’ is the conjugate base of P;, ® is the dyadic
symbol. The right and left Cauchy—Green strain D and d are

D=F"F, d=FF' (3)

where superscript T indicates transposition. It can be proved that D and d possess the same
invariants

I, =D:E=d.E
12=D2:Ezd2:E
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I,=D:E=d*E @)

in which “*:”” denotes dual scale product and E is unit tensor.
In Gao (1990), a new form of specific strain energy is given,

W= A[(J/K'*)"-3"]+B(K—1)"K~7 (5)
where

I=1,, K=i(I3-31L+2I), (6)

A, B, n, m, q are positive constants. The Kirchhoff stress ¢ and Cauchy stress ¢ can be
obtained from W

a=26—~ t=K '*F-¢-F . (N
From eqns (5)—(7) we obtain

T = 2nAdI"" ‘K“/Z“"’/”(d-— i;E)+ 2BK—1)" 'K~ [(m—g)K+glE.  (8)

Evidently, the stress in eqn (8) is decomposed into the deviatoric part and spherical part.
This is the main advantage of relation (8). It is verified that if m > ¢, 3¢ > n and n > 3/4,
the relation (8) keeps reasonable for a singular point. The equilibrium equation is

Vir=0 )
in which
0
Ve=p —. 10
L (10)

3. EXPANDING SECTOR

We can imagine various deformation patterns of the wedge tip under compression,
from which various mathematical formula were obtained. However, only one is reasonable,
as stated in the following. Figure 2(a) shows the cross section of a wedge before loading,
whereas Fig. 2(b) shows the same cross section after loading. For simplicity, only the
symmetric loading case is considered here. The wedge tip field can be divided into several
sectors. N and N’ are called narrowing sectors; before deformation, N and N’ occupy
almost the whole wedge tip domain, but after deformation they become very narrow. Eis
called the expanding sector; before deformation E is very narrow, but after deformation
it becomes very wide and occupies almost the whole domain surrounding the wedge tip. The

R.8)

(a) (b)

Fig. 2. Deformation pattern of a wedge : (a) before loading ; (b) after loading.
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deformation pattern in domain N (or N’) and E are quite different so that they must be

described individually.

3.1. Strain and stress

Now we consider the expanding sector £. Two Lagrangian coordinate systems, (R, ®)
and (r, 8), are taken so that (R, ®) is the polar coordinate before deformation, while {(r,8)
is the polar coordinate after deformation. In sector E we assume that (R, ®) are given by

the following mapping function of (r, 6)

R =r""p(8)
Q@ = ry(6)

where d, ¢ are constants to be determined. Let

JP opP
Przg;s P(}:“é§
opP 1 oP

€r = EE y €g = ﬁ é‘é)— s
then, from eqns (11) and (12), we can obtain

P, = r~p[(1 —d)er +cr'jes]
Py =r'"(@eg+rpyes).
Therefore the conjugate base is obtained

P =r(royer—¢'eg)/S
PY = p== L o[ — crreg + (1 — d)eo)/S,

in which
S = ol[(1 —d)ypy’ —co'y].
Let
op 1 dp
e,—-é-; and e9-;69,

then from egns (2), (3), (14) and (16) we obtain the dominant terms of d;

d=r9%Sp% Re+(1—d) o’ @e—(1—-d)po'(e, D es+e D e,)].

Using eqns (4), (6) and (17) it follows
Kl[Z — r2a’-»cs—»1, l — r2d-—2c~Ts»~2
in which

T=¢?+(1-d) ¢’

an

(12)

(13)

(14)

(15)

(16)

(a7

(18)

(19)

Since the wedge tip is under compression, we can assume that K- 0 when r — 0. This

assumption is verified by the analysis process, then eqn (8) is simplified to
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= 2nAI"" K- 9112 (d— ; E)—quK“"“”ZE. (20)

Substituting eqns (17) and (18) into eqn (20) and matching the singularity we obtain
- 1—¢4n/3 r2 T 2.2 T
T = TR dp AT IS TS e =3 e, e+ (1—-d) ¢ =3 e, ® ey

—(l—-d)op' (e, ®ey+e; ® e,)]MZqBS 2art E} ¥3))]

and

_3n(2¢+1) _ bg+n
=3+ © T 3grm” 22)

In order to match the order of stress with that of load, it is required that y = 1, then we
have

_ 2n+3q __n+6g 23)
T2+ 1)’ ‘T M2+ D)
3.2. Equilibrium equation and solution
The equilibrium eqn (9) is written as
o ot ol
o trag T =0
ot 1 2
ety =0 @
where
~1 ol T
=y ,?.MAT" }Sk {4n/3}) (prz__g _2qgszq+l
G5 —1 gl T
% = 2nAT S I (1~ d) % — 3 —2gBS**!
0 = —r 20AT"' S =4 (1 —d)pg'). (25)
Since 17 ~ ¥ ~ % ~ r~!, the solution of eqn (24) takes the form,
™ =r""4tcos 9, v’ =r"'Atsinb, (26)

where 7 is a constant to be determined by load. From eqns (25) and (26) we obtain the
equations to determine ¢ and ¢ ;

—tsin @ N B i
3(1_‘2!)(9(’0/[2(1“"‘{) @ —@ ]"‘EQ’E S -—-fCOS@,

2n(1—dype T 18~ 43 = . tsin 6. @n

In addition we obtain the expression of ©”
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T = r“t{cos 0+ (l-—jh?—d—)gw[(l—d)z(pz—(p’z]}. (28)

The boundary conditions for eqn (27) are
¢'0)=0 (29)
¥(0) = 0. (30)

For a given value of ¢, eqn (27) under boundary conditions {29) and (30), has a unique
solution, ¢ and . As mentioned above, ¢ is a parameter depending upon the load, therefore
it is necessary to discuss the general relation between ¢, ¢ and ¢. From eqns (27), (29) and
(30), it is easy to prove that if @, Y are the solutions corresponding to the parameter ¢, then
ko, k= will be the solutions corresponding to the parameter kz. Here k is an arbitrary
positive constant. So, when parameter 7 changes, the solutions ¢ and ¥ will undergo a
similar transformation ; ¢ can be considered as the controlling parameter of the field. Based
on the above discussion, we can calculate eqn (27) only for a specific value of ¢ (for example,
t = 1). Since eqn (27) is nonlinear for the derivative ¢’, for convenience of numerical
solution, from eqn (27) we can obtain

¢?* T¢ 9 3(1—-d) }
"= — Li2nM— —~(1+M)cot 8 |+ ! 31
=" Q{[ (p( ) ] wntg %0 (31)
where
32g+1 ,
M=—%;:‘%—)~, L=3(1-d)pg cot 8+2(1—d)’ o> —¢"*
Q= T[T+ ~d)?*@?|+ ML[2n— 1)¢’* + (1 —d)*¢?). (32)

For egn (31), we must supplement a new boundary condition

9(0) = @o (33)

where ¢, is a constant to adjust the given value of 1. If we let ¢ = @, ®(0), then §(0) = 1
@, expresses the magnitude of deformation field. The relation between ¢, and ¢ will be
discussed later. The curves of ®(8) for some values of # and ¢ are shown in Fig. 3. The
shape of curves ®(8) is independent of parameter .

From the second of eqn (27), the equation of ¥ is obtained

! I i
0 /4 n/2 3n/4 T

Fig. 3. The curves of @ = @/, for B/4 = 1.
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Table 1. Co/,

q
n 2 4 8
1 0.5004 0.4995 0.4992
2 0.5288 0.5443 0.5552
4 0.5807 0.6191 0.6475
10 0.6303 0.6949 0.7453

(34

’ sy 1 2n(1-—d)(p(p' . 3/(4n—3)
(1= Do —cq)l//_(p[ t+sin 0 T :

When ¢, is fixed, eqn (34), under condition (30), can be calculated numerically with eqn
(31) if ¢ is known. Unfortunately, for a fixed ¢, we still do not know the corresponding ¢,
and eqn (27) does not provide any relation between ¢, and ¢ since ¢’(0) = 0. In order to
reveal the relation of ¢, and ¢ we go back to the original eqn (27) and consider its asymptotic
behavior when 6 — . It is easy to prove that ¢ ~ (n—8), y ~ (z—0) "' when 6 - n.
Therefore we can let

¢p=C,(n—0), y=Cy(n—0)"" when 6-n. 35

By substituting eqn (35) into eqn (27), we can obtain

A 1 d—{(1/2n) t d
—a-unen| 2 4
=3z el
1 T4 I\ ¢
“=Tre—a’ [B(d_2n)} n(l=d)| - (36)

On the other hand, from the numerical calculation of eqn (31), we can obtain the ratio of
C,/@, = H for various n and ¢. The value of H is listed in Table 1. Using Table 1 and eqn
(36) we can calculate the value ¢ for a given ¢,, therefore the numerical solution of egn
(34) can be performed. When ¢, =1 and B/4 = 1, the curves of  for various n, q are
shown in Fig. 4.

70
x n=1 q=2
on=2 q=4
#* n=4 q=4
v
» X
] ] | ]
0 n/4 /2 3n/4 R
0

Fig. 4. The curves of § for p(0) = 1, B/4d = 1.
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4. NARROWING SECTORS

The formula (11) is not valid for the vicinity of § = += in Fig. 2(b) because ¢ — 0
and ¢ — oo. Now, we consider the narrowing sectors N and N’ that occupy almost the
whole wedge tip domain before loading but shrink to the vicinity of 8 = + r after loading.

For simplicity we only discuss sector N, but the method is also valid for sector N'.

4.1. Strain and stress
In sector N we assume

R=r"*"f()
@ =y4@), {=@-0r

From eqns (12) and (37) we obtain

P, =r*{[(1+b)f—alf ler—alfg eo}
Py =r'*=4(— f'ex— fg'eo).

Then we can obtain the conjugate base

1
P = r"é’;(~fg’eg +f'es)

i )
P? = pot-! S {alfg'ex+[(1+b)f —alf leo}
in which
v=—(1+b)fg"
Let

dzd"e,@)ej (i,j=r,9)
then from eqns (39) and (3) we can obtain

drr=r~2b1)~2u
d@ﬁ — r2n——-2bv—2{a2£2f2912+[(1 +b)f-—~a§f’]2}
d = ra—2bv-—2{_aéf2g12 +f'[(i+b)f—~a§f']}

where

u=f74 19"
Furthermore, we obtain

[=r-2p=2y, KV = pampet

Substituting eqns (42)—(44) into eqn (20) and matching the singularity, noting that 7 ~ r™,

it follows

(37

(38)

(39)

(40)

C3))

(42)

(43)

(44)

i
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6g+n 3g—n
—_arr 97" _._a 45
W Y Eu Tiak (45)

4.2. Coordinate transformation
Using a similar method to Gao (1994), we introduce a new coordinate system (£, #) in
the vicinity of 8 = =, as shown in Fig. 5,

{=m-0)/r

n=rp+§m—m1. (46)

It can be proved that (&, n) is an approximately orthogonal system in the vicinity of § = =.
The inverse expression is

0=n~-Ln"
a ay2
r=n 1—5(611) . CY))
From eqns (46) and (47) we can obtain the relations between unit vectors
e, =¢,—aln’e;, e, = —e;,—aln’e,. (48)
Using eqns (47), (48), (41) and (42) we obtain
d=n""v"[ue, ®e,—n°(1+b)ff"(e: D¢, +e, De;)+n**(1+b)*f’e; De;]. (49)
Substituting eqns (44) and (49) into eqn (20), it follows

M = n“(gnAu"v‘“(“"/”_2qBUZq+')
¢ = —ﬂ—l(énAu"vl_“"/”+2unz‘l+‘)

T-fn = —n"“2nA(1 +b)un—lvl—(4n/3)ff/. (50)

Furthermore, using eqn (48) we have

d 8 ]
e gg e = " gz e = L+
0 0
€ Gy &1 = T8 5y & = A+ TIL (1)

4.3. Equilibrium equation and solution
Substituting eqns (51) and (50) into eqn (9) and matching the singularity we can obtain

Fig. 5. &, 5 coordinate.
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0 1 ¢ . 1l+4a .
— M — T4 w,_(1-'7"_.[;6) =0
a;l ’,IH—a aé n

¢

51_5 T = (. (52)

1

Noting that t" ~ % ~ y~', 7% ~ y*~' and considering eqn (26), we can reduce eqn (52) as

= —p 7t
_d__ [an 1 2)] —(4n:‘3)(1 +b)ff,] __aunvlw(dnﬁ} _ _t_ . 0 (53)
dé 2n

in which ¢ is the same constant as in eqn (26). For the convenience of numerical calculation
from eqn (53) we obtain

‘ )
fr—fg? = ff (1 - “}fbg) [2;@]‘“ - (7” + I)u+(2q+ hHa —3:Q)u]

w2 Jg ug a+1Q\2nf’
g'+2 f A - l+6 /) f (>4
in which
1
— RETRO T
0 7 u™"r
n . [2n 2
A=2 3 —1if+ 3 + 1 u—2q¢+ DA -3:QR2n—-1) " +u]. (55)
The boundary conditions of eqn (54) are
M0) =0, 5°0)=—n""¢ (56)
9(0) =6y, g(x)=0. (57
Using eqn (50) we can write eqn (56) as
2 B
(0 =0, <?n Wl T 4 2g 4 172"“) =, (58)
E=0

Equation (54), under boundary conditions (57) and (58), can be solved numerically; f(0)
and g'(0) are parameters to adjust conditions (57) and (58). The curves of f(£) and g(&)
are shown in Figs 6 and 7 for @, = 45°, B/4 = 1, f(0) = 1 (corresponding ¢ is calculated),

= = -] 3

"]

P
#

F S

> % x O
-

g
Fig. 6. The curves of /(&) for B/4d = 1, f{0) =1, @, = 45",
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x/4

> x x O
2 a3 3
n
L
I - T - Y - B )
[] H
PN ]

=
1

§
Fig. 7. The curves of g(¢) for B/4 =1, f(0) = 1, ©, = 45°.

but n and ¢ are taken as various values. The curves of f(£) and g(¢) are shown in Figs 8
and 9 for B/4 =1, f(0) = 1, ®, = 90°. This is the case of a half space acted by a line load.

4.4. The nature of the solution

Now we discuss the general nature of the solution of eqn (54). From eqns (54), (57)
and (58) we can see that if fand g are the solutions corresponding to the parameter ¢, then
f, € and ¢ can be replaced by k“~°f, k=° ¢ and kt, respectively and the equations are
still satisfied, i.e. when parameter ¢ changes, the solution f and g will undergo a similar
transformation. Therefore, we only need to give the numerical result of eqn (54) for a
specified value of ¢ (for example t = 1).

The numerical result shows that :Q — 1+b—a when ¢ —> o0, i.e. eqn (54) has the
following asymptotic form:

7

[ —f'g*=0, g”+2—f—g’=0 when & - co. (59)
The solution of eqn (59) is
f=Ho*E-&) +1]1'2, g =g*—arctglw(¢—&)] (60)
where f*, g*, w and &, are constants.
1.5
*,‘//
1.0
f
Qn=1 q=2
X n= q=4
* n= q=4
A n= q=4
}
0 2.0
4

Fig. 8. The curves of f(£) for B/A = 1, f(0) = 1, ©, = 90°.
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s 2308
O 0 0 o
1
P R U S

> *

=

"o
&N -

J
0 3.0

3
Fig. 9. The curves of g(&) for B/lA =1, f(0) = 1,0, = 90"

Considering the boundary condition (57) from eqn (60) we have the following asymp-
totic expression for f and g when ¢ — oo,

1
f=r*et, 9= 08 (61)
Using eqns (40), (43) and (61) we have
v=(1+b)f*w, u= f**w?> when ¢ - 0. (62)

Substituting eqn (62) into the second equation of eqn (50), then into the first equation of
eqn (53), we can obtain

2 B
T/ (4B 6] T 12— [(14b) 0] = 1 (63)
On the other hand, as mentioned before, tQ — 1 +b—a when ¢ - o0, i.e.
t
Ef*‘z"w“z"[(l+b)f*2a)]“‘"/3"l =1+b—a, (64)

so from eqns (63) and (64) we obtain

A 1 a—b-—{1/2n) t a—bh
*opy o D= (1720} 77 Jy —_—
fro=2 [B (" b 2n)] [n(l —a+b):l

A 1 a—(1/n) a
w = 2”(‘/"’(1+b)|:§ (a—b——%>:| [W—ﬁ] . (65)

5. MATCHING OF SECTORS N AND E

Functions (R, #) possess different forms in sectors N and E. Since ¢, ¢ and f, ¢
represent the same quantities, they must be consistent to each other when # — 7 and £ —
oo. Now we consider the matching condition. Substituting eqn (35) into eqn (11) we obtain
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R=r'""C,(n—8)
© =rCy(n—0)"" when G-z but - oo, (66)

and substituting eqn (61) into eqn (37) we obtain
R = r!' =% f*qy(n—6)

@2#’%(%—'9)_[ when @7 but &-— 0. (67)

Comparing eqns (66) and (67), we can see that eqns (11) and (37) are consistent with each
other provided that

C,=f*o, C,=w" (68)

On the other hand, noting eqn (45) and comparing eqn (36) with eqn (65), we find that eqn
(68) is satisfied automatically. Therefore, the method of dividing the whole field into sectors
N and E is successful.

6. THE RELATION BETWEEN LOAD AND FIELD

As mentioned above, the field, i.e. the magnitudes of @, ¢, fand g are controlled by
the parameters n, ¢, B/4A and t. Now we derive the relation between the load and the
parameters. Using eqn (26) and (28) we can calculate the resultant force # acting on the
wedge tip,

F = —2r (" cos 6 —1"sin 0) d6 = ¢C 69)
0
where
T sin 28
C=—| —————[(1=d)o*~¢"*]db. 70
L(l—d)w{( Yo' (70

Evidently, the value of coefficient C only depends on the shape of function ¢ but not its
magnitude. On the other hand, from eqn (31) we can see the shape of function ¢ only
depends on parameter »n, g but not B/4. Therefore, we can conclude that C only depends
on the values of n, g. The values of C are listed in Table 2 for various » and g.

7. CONCLUSIONS

For the rubber-like materials discussed in this paper, a notch corner under the com-
pression of a line load will be locally closed. Under a similar load, the edge tip will be
shrivelled to form a locally closed notch. In both cases, the deformation field contains a
singular point (the wedge tip or the notch corner). When the singular point is approached,

Table 2. The values of ¢

q
n 2 4 8
1 6.309 6.288 6.278
2 7.062 7.527 7.880
4 8.774 10.402 11.867
10 10.954 15.024 19.912

SAS 31:17-H
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the stress possesses the order of ™! (r is the distance to the singular point in the deformed
configuration) ; this feature is similar to that of the linear elastic case.

The deformation pattern near a wedge tip (or a notch corner) can be described
separately for expanding sector and narrowing sector. The mapping function @(8), ¥(#)
and f(&). g(&) are controlled by the constitutive parameters n, g, 4, B and the loading
parameter ¢ that is dependent on the load #. In particular the shape of function ¢ only
depends on the parameters » and g.

The analysis in this paper is also valid for the problem that an infinite medium under
the action of a concentrated line load, and the deformation pattern is the same as that for
a wedge. It should be recalled that in linear elastic theory, the concentrated force problems
for a wedge and for a whole plane have different forms of solution. However, in nonlinear
theory. the solution forms are different for tension case and compression case.
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